If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=248(t)-16t^2
We move all terms to the left:
0-(248(t)-16t^2)=0
We add all the numbers together, and all the variables
-(248t-16t^2)=0
We get rid of parentheses
16t^2-248t=0
a = 16; b = -248; c = 0;
Δ = b2-4ac
Δ = -2482-4·16·0
Δ = 61504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{61504}=248$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-248)-248}{2*16}=\frac{0}{32} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-248)+248}{2*16}=\frac{496}{32} =15+1/2 $
| 5x^2+200x-1500=0 | | 84=(x+2)² | | 8x+2+5x-4=180 | | 8s−12=−8 | | 3/4x=2/1 | | 2^2x-4=68 | | -3(4c+6)-8=-50 | | Y=24-3x1 | | 2(3y-2)+7=33 | | 2{x}+4=6x-8 | | -4(3-2m)=44 | | 4x+1=1=3x+2 | | 10^2x=200 | | 4x+5-10x-37=0 | | E^x+9=25 | | 5/k=8 | | E^x=63 | | x-0.1x=41951448 | | 5(10)^x=40 | | y=I-(1)-4I | | y=I-X-4I | | 13900=000000000x4000 | | 1/5u-1/3=-1/2 | | 19+7n=-5+8(-4+2n) | | 445-97=f | | Y=(4.5x)×45 | | Y=4.5x×45 | | 10(c)=9c+C | | 18c-10c=56 | | 6d-d=60 | | 8k-k=42 | | 8m-3m=45 |